Tlx3 Function in the Dorsal Root Ganglion is Pivotal to Itch and Pain Sensations
نویسندگان
چکیده
Itch, a sensation eliciting a desire to scratch, is distinct from but not completely independent of pain. Inspiring achievements have been made in the characterization of itch-related receptors and neurotransmitters, but the molecular mechanisms controlling the development of pruriceptors remain poorly understood. Here, our RNAseq and in situ hybridization data show that the transcription factor Tlx3 is required for the expression of a majority of itch-related molecules in the dorsal root ganglion (DRG). As a result, Tlx3F/F;Nav1.8-cre mice exhibit significantly attenuated acute and dry skin-induced chronic itch. Furthermore, our study indicates that TRPV1 plays a pivotal role in the chronic itch evoked by dry skin and allergic contact dermatitis (ACD). The mutants also display impaired response to cold and inflammatory pain and elevated response to capsaicin, whereas the responses to acute mechanical, thermal stimuli and neuropathic pain remain normal. In Tlx3F/F;Nav1.8-cre mice, TRPV1 is derepressed and expands predominantly into IB4+ non-peptidergic (NP) neurons. Collectively, our data reveal a molecular mechanism in regulating the development of pruriceptors and controlling itch and pain sensations.
منابع مشابه
Tlx3 and Runx1 act in combination to coordinate the development of a cohort of nociceptors, thermoceptors, and pruriceptors.
Neurons in the mouse dorsal root ganglia (DRGs) are composed of a variety of sensory modalities, such as pain-related nociceptors, itch-related pruriceptors, and thermoceptors. All these neurons are derived from late-born neurons that are initially marked by the expression of the nerve growth factor receptor TrkA. During perinatal and postnatal development, these TrkA lineage neurons are global...
متن کاملThe Neuroprotective Effect of Nepeta menthoides on Axotomized Dorsal Root Ganglion Sensory Neurons in Neonate Rats
Background and Objective: Sensory neurons have critical role in improvement of functional outcome of any neuroprotective strategy. The herbal medicine Nepeta menthoides has been reported to have anti-apoptotic effect on axotomized spinal motoneurons. In the present study, the putative neuroprotective effect of Nepeta menthoides on the axotomized dorsal root ganglion sensory neurons in neonate r...
متن کاملMorphological Identification of Cell Death in Dorsal Root Ganglion Neurons Following Peripheral Nerve injury and repair in adult rat
Background: Axotomy causes sensory neuronal loss. Reconnection of proximal and distal nerve ends by surgical repair improves neuronal survival. It is important to know the morphology of primary sensory neurons after the surgical repair of their peripheral processes. Methods: Animals (male Wistar rats) were exposed to models of sciatic nerve transection, direct epineurial suture repair of sciati...
متن کاملPain and itch: insights into the neural circuits of aversive somatosensation in health and disease.
Although pain and itch are distinct sensations, most noxious chemicals are not very specific to one sensation over the other, and recent discoveries are revealing that Trp channels function as transducers for both. A key difference between these sensations is that itch is initiated by irritation of the skin, whereas pain can be elicited from almost anywhere in the body; thus, itch may be encode...
متن کاملThe Effect of Swimming Training on Ganglionic Cells Population and Class III Beta-Tubulin Protein in Dorsal Root Ganglion of Wistar Male Rats: An Experimental Study
Background and Objectives: β-tubulin protein is the protein that has a key role in plasticity and neurogenesis in the mature neurons. On the other hand, endurance training is effective in neuron life and lifespan. The present study aimed to investigate the effect of 20 days swimming training on class III β-tubulin and the number of ganglion cells in DRG of Wistar male rats. Materials and Me...
متن کامل